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ABSTRACT 

For the special case of games with linearly transferable utility, a treatment 
preserving the main features of the controversial treatment in the author's 
doctoral dissertation is newly derived from a model for negotiation and play 
that is more elaborate than most such models. The crucial point of the deri- 
vation is that the author's special bargaining theory is not needed; the usual 
Zeuthen-Nash-Harsanyi bargaining theory gives the same result. The main 
novelty in the model that makes this possible is the replacement of customary 
informal uses of "enforceable agreements" by explicit contract law. The 
problems of contract law for cooperative games seem to be very complex, 
and the present work makes only a bare beginning on them. A characteristic 
function and value are derived. 

Introduction. This paper presents a value for certain n-person cooperative 
games (viz. those with linearly transferable utility) which, though technically new, 
could have been derived by trivial steps from two different places in the literature. 
There are two main points to the paper. Background: my previous work in cooper- 
ative games [4, 5] begins by changing utility theory and goes forward on radically 
different lines from anyone else's work; and, sound or not, it has not been followed. 

Main point 1: here I concede almost everything to the opposition, using their 
utility theory, their (Zeuthen-Nash-Harsanyi [1]) bargaining theory, and (though 
this is agreement, not concession) Shapley's formula, which can be based on a 
model due to Harsanyi [2], for deriving a value from a characteristic function. 
Nevertheless the value obtained is consistent with my previous scattered remarks 
[4, 5] on what a value should do, and inconsistent with the evaluations most recently 
proposed by Harsanyi [3], Selten [9], and Shapley [11 ]. The crucial turn of  course 
lies under the word "almost".  I depart from the custom of  treating the coalition 
as a sort of  religious order acting like a single person. I introduce a simple explicit 
contract law. It is actually too simple; for playing a game cooperatively, one 
would want a more sophisticated law, and its development appears to involve 
knotty problems. But the simple contracts used here seem to suffice for evaluation, 

in much the same way that ordinary mixed strategies suffice for a matrix game, 

because the means proposed secure certain results regardless of what the other 
players do. 

Main point 2: for the games considered, one can speak of  " the"  other value, 
for Harsanyi [3], Selten [9], and Shapley [11 ] assign the same values to these games. 
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The point is that the other value, to speak picturesquely, swindles certain players. 
Obviously there is room for considerable controversy about such a point. At any 
rate, the middle section of this paper concentrates ontwo three-person games which 
we evaluate differently. Selten's derivation of a value and other considerations 
lead us to examine a couple of related games. 

I have profited from a confrontation with Selten on this question, and shall try 
to indicate some of his points about the examples. But the Selten value seems to 
require support by a theory at least as detailed as the simple theory given in section 
1 below taking account of contract law. Toward that, Selten has made one point 
quite clear: he follows ScheUing [8] in stressing unilateral commitments and feels 
they should have a legal standing if my contracts do. Lacking a detailed develop- 
ment, one can still note that if commitments are to have the force suggested by 
Schelling, there must be possible legal proceedings compelling "specific perform- 
ante", the actual carrying out of promised actions. In contrast ,I propose to 
exclude specific performance, securing contracts only by penalty clauses for 
pecuniary (utility) indemnities. 

Section 3 of the paper has the only non-trivial theorems, but is much the least 
interesting; it gives some results on "games with infinitely many players". 

The ideas of this paper were worked out at the 1965 Jerusalem Game Theory 
Workshop, sponsored by The Hebrew University and the Israel Academy of 
Sciences and Humanities. I am much indebted to J. C. Harsanyi, L. S. Shapley, 
Martin Shubik and R. M. Thrall for constructive criticism there. The writing was 
supported by the National Science Foundation. 

1. Value. For the simplest definition of the proposed value, we consider games 
in normal form. Though for most game theory, and for everything in this paper, 
the normal form suffices, we shall usually find it convenient to speak of the extensive 
form. If F is an n-person finite game in normal form with payoff function h, 
define h-(xt ,  ...,x~) for each (pure) strategy n-tuple ~ = (xl . . . . .  x~) by 
ht ' (O = hi(O + 1/n(m - Y, hj(~)), where m is the joint maximum maxY.hl(~). 
Let F -  be the game derived from F by replacing the payoff h with h-. We may 
follow an unpublished manuscript of Harsanyi and call F -  the upraised game. 
It is evidently constant-sum. We define the upraised characteristic function v-  = Vr 
of F as the Neumann-Morgenstern characteristic function of F -  and the contract 

value d)- of F as the Shapley value of F-. 
What does ~b- evaluate ? To begin with, there is substantial agreement on the 

Shapley value for constant-sum transferable-utility games. As far as I know, 
none of the numerous values for more or less general games that have been 
proposed since Shapley's original paper [10] has differed on these games. A number 
of arguments leadingto it are known. Note Shapley's axiomatic argument, adapted 
to the constant-sum setting in [4], and note Harsanyi's bargaining model [2]. 
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Accordingly, we shall here take the step from v- to ~ -  as established, and examine 
the passage from F to v-. 

A specification of the assumptions involved that would be adequate for, say, 
the designer of  a game-theoretic experiment, would be extremely long. Roughly, 

we need the usual assumptions after von-Neumann-Morgenstern [7], amplified 
by explicit legal assumptions (see below), and supplemented by a symmetry or 
democracy assumption to the effect that the players recognize each other as peers. 
That last assumption enters in two ways: in the (standard) bargaining theory to 
be applied to the model, and also in the structure of  the model, where we seem to 
need a special meeting of  all players. Of course no positive or negative concern 
of  the players with each other's welfare is implied. In Zeuthen's and in Harsanyi's 
presentation of the bargaining theory [1], a player's resistance to a concession is 
supposed to depend monotonically on the ratio of the cost (to him) of the conces- 
sion to the cost (to him) of  a breakdown of negotiations, and by the same rule 
for all players. As for the special meeting of  all players, it serves to conclude 
indefinitely long negotiations which may have already determined the outcome; 
but players considering whether to delay or not in the previous negotiations 
have the definite prospect of  a last grand meeting, into which they will go with the 
support derived from previous agreements or the independence secured by 
previous disagreements, whichever they prefer. 

Concerning the legal apparatus of the model, some preliminary remarks. Indisputably one 
wants contracts to be sufficiently definite so that a trial court can in a finite time determine 
whether the contract has been violated. That sounds like a question from recursive function 
theory; and I think the analogy is sound, remote though it seems from ordinary business practice. 
An analogue in contracts to the endless passage from n to n + 1 that gives rise to arithmetic 
may be found in this remark: if a contract Cn (between A and B, say) could affect the prospects 
of the players, then so could a contract Cn+ t ! (between A and C) binding its parties to enter 
no contract of the form Cn. We may hope that the analogy is unsound. At any rate, the apparatus 
here proposed gives it no footing. 

This model admits those and only those contracts C such that, in consideration 
of certain side payments x among the set S of parties to C, all players in S agree 
(1) to relinquish all their turns to move in the game tree to a designated agent 
who is to play a specified mixed strategy a and (2) to sign no other contract; 
any member i of  S violating (1) or (2) is to pay a specified vector indemnityfi  to 
the rest of  S. Enforcement is paternalistic; without plaintiff, defendant, or trial, 
the court will assess the indemnities provided for. 

Time taken to move or to negotiate is customarily ignored in game theory and 
can be ignored here, as long as we have three successive periods: the first for 
general negotiation, the second for an attempt for all players to agree on an 

outcome, the third (if necessary) for play and assessment and payment of  inden- 
nities. There is nothing to add to what has been said on the first period, and 

almost nothing on the third; but the second period bargaining requires a deter- 
mination cf  the outcome if no agreement is reached. Now the players may be 
legally committed to play certain strategies, and may even have inconsistent 
commitments. In the second period I want them actually committed to a certain 
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course of play. Thus the second period begins wi h each player handing to a clerk 
a statement of a mixed strategy on the following finite set: the union of his set 
of pure strategies in the game tree and his set of contracts. (Playing a contract 
means complying with its play clause, and that would determine his play com- 
pletely. This "early" commitment to a strategy is objectionable if one thinks of 
it as early, but the players are supposed to be through negotiating, ready to play, 
only making a last attempt to secure a jointly optimal outcome by compromise.) 
Then if the second period results in agreement on an outcome, that is the outcome; 
if not, play is governed by the strategies given to the clerk. 

One remark seems needed, on cancelling contracts. Formally, we allowed the 
set of all players to cancel or render irrelevant previous contracts. In effect any 
superset of the set of parties to a contract C can cancel C by drawing up a new 
contract D (a direct violation of C) and offsetting the indemnities associated with C 
by the side payments associated with D. 

The model is now completely specified, by the second and third paragraphs 
before this one. It is not specifically a bargaining model, though because of the 
rudimentary contract law it is a defective model for play. I remark that the cus- 
tomary model for cooperative play, from [7] on, amounts to the first period of this 
model, with a contract law about a millennium more primitive, followed by play. 

Assuming Zeuthen-Nash-Harsanyi bargaining theory, any set S of  players can 
secure jointly in this model v-(S). (Since the same will hold for the complement 
of S, it will follow that v-(S) is all that S can secure.) After the completely trivial 
proof, we shall note how the model leads to a result so different from the result 
of Harsanyi's similar model in [3]. Proof: our (second period) bargaining problem, 
for any threat payoff (tl . . . . .  tn), has the solution (t 1 + a . . . . .  t, + a), where na is 
the excess m -  Eti[l ].Thus the first-period problem for S is(t) the maximin problem, 
familiar from the Neumann-Morgenstern theory, for the upraised game F- ;  and 
its solution is the solution v-(S) of that problem [7]. 

How ? Well, Harsanyi does not permit S to choose the best coordinated mixed 
strategy a and still act as a number of separate persons in the bargaining. He does 
not even permit them to play uncoordinated strategies and bargain as separate 
persons. In Harsanyi's model, the number corresponding to v-(S) (call it u(S)) 
comes from S and its complement choosing the best coordinated strategies and 
bargaining as two ("corporate") persons. (Strictly speaking, the present model 
does not permit them to bargain separately or corporately as they may prefer; 
but it would not matter if it did, since Zeuthen-Nash-Harsanyi bargaining theory 
for games with transferable utility never makes combination gainful.) Accord 
ingly the rather strange function u that emerges is not a plausible characteristic 
function (not superadditive). Harsanyi puts no stress on u and describes his model 

(1) The fact that the problem for "S", which is not a legal individual, is fairly simple follows 
from their ability to secure each other's continued cooperation by large indemnities. 
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as a model for bargaining, not for play. The presentation in [3] goes on, in effect re- 
producing Harsanyi's previous [2] bargaining-model derivation of the Shapley value. 

2. Crucial examples. There are two rather simple three-person games, for one 
of which the contract value seems prima facie sound and the Selten value(z) 
strange, with the reverse holding for the other. It is not only as a debating tactic 
that I present the latter first; it is simpler. In fact, there is no need to bother about 
the details of moves. There are three players, Adams, Brown, Cox. If  Adams 
wishes it, Brown will receive 90 units. Otherwise no one gets anything. Call the 
game Fgo. 

The Selten value is (45, 45, 0). Surely this seems obviously right. But the upraised 
characteristic function gives Adams (precisely, {Adams}) 30, Brown 30, Cox 0, 
and so on, and the contract value is (40, 40, 10). 

Several objections may be made to this contract value. First, what has Cox to do 
with the game ? (With a little jargon, the objector can give an answer instead 
of a question; Cox is a dummy, and has nothing to do with the game.) The model 
already described provides an answer. The indicated contract for Cox to try to 
negotiate with (e.g.) Adams will call for Cox to pay Adams 15 units, and for 
Adams to deny Brown the 90, paying Cox a prohibitively large indemnity if he 
violates. I f  this is legal, and accomplished, Brown cannot afterward hope to split 
45-45 with Adams; Cox has bought a full one-third share in the enterprise of 
stealing 90 dollars, or whatever it is. Cox can expect a gross return of 30, net of 15. 
The reader can easily work out the whole analysis. 

There is a second-order objection that I have met often enough to justify a 
comment on it. "Why don't  Adams and Brown close ranks and get 45 instead 
407" They may. OrAdams and Cox may close ranks. That would get Adams 45. 

The second serious objection is, if Cox can do this, what about Davis ? We 
were discussing a three-person game. It seems to me that the reminder that the 
enterprise might consist of stealing 90 dollars almost suffices to answer this. 
It  is notorious that in applying game theory to the description of actual conflict 
situations, often the hardest part is to say what game is being played. 

There is a legitimate question, what happens if there are very many players 
in the situation of Cox. Some answers are given in Section 3 below. 

Of course there are other legitimate questions on various levels (Is this model 
for cooperative play socially useful ?); not for this paper. 

A counterquestion: how does Selten justify the value (45, 45, 0)? By axioms. 
A dummy is a player having no moves, and the same payoff at every outcome. 
Two axioms require dummies to get nothing and to exert no influence [9]. Har- 
sanyi's model secures that value by requiring Cox in effect to marry Adams and 
lose his legal identity if he makes any agreement with Adams at all. 

(2) Selten's paper [9] discusses a number of values, but the main results (according to  
Selten's Introduction) concern this one and its constant --  sum specialization. 
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Presumably some readers arc now at least provisionally convinced. I must 
address readers who consider dummies outside the community or object to a 
pluralistic society. The next game Fs4 has merits for that purpose and will lead 
to other points too. The moves are as before, but the payoff is (0, 54, 36) if Adams 
wishes, otherwise (0, 0, 0). Here the contract value is the rather obvious (30, 30, 30). 
The reader can check the analysis, but a reader who stayed with Selten for the 
previous example will give no credit to the contract value. An ad hoc argument 
for (30, 30, 30): each player may be supposed to ask for a "fair share". Adams' 
claim is ironclad; without him, nothing can be done. Brown's claim is at least 
as good as Cox's. Cox's claim is that the other players cannot get anything without 
giving Cox more than 30; if they wish to divide 90, they can do it foolishly and 
overpay Cox, or they can treat it as a project requiring unanimous agreement 

and share equally. 
The Selten value is (33, 33, 24). All arguments for it (that I know of) depend 

somehow, and I think must depend, on a judgment that the 54-36 security 
which Adams-Brown have against irrational behavior, or skillful bargaining, 
or other deviant actions by Cox, is worth something, while the lower-level security 
which Adams-Cox have is worth nothing. (If it were worth something, Adams 
would have a higher value than Brown.) Of course the dividing line is 45, and an 
unfriendly critic can readily explain it as the product of a naive theory of coalition 
formation. 

I do not see how the friendliest critic can maintain the (33, 33, 24) value in a 
social context like that of Harsanyi's model(3) or my more detailed model in 
Section 1. If the players are bargaining, we may suppose Cox to say: "Your 
insurance against my deviations is interesting, and I wish I had insurance against 
your theory. I will not accept 24. If you wish to optimize, give me 30. If you value 
your insurance more, take it, and I will pocket my 36". 

If the context is arbitration, Cox may be more helpless, but otherwise his 
argument still seems sound. The more serious defense of (33, 33, 24), in line 
with the insurance idea, treats the value as some sort of average outcome of play. 
(With the best precedent; the idea is older [10] than the idea of a value as outcome 
of a definite procedure.) It is difficult to criticize a distribution of which only the 
mean is known, but we can look. 

Since an insurance policy paying 45 is worth 0 in this setting, the last 9 of Adams- 
Brown's 54 provides all their advantage. (We are comparing Fs4 with F45, defined 
in the obvious way. The Selten and contract values for F45 agree: (30, 30, 30).) 
This is 4½ units each, some of the time. Their gain in value is 3 each, in the mean. 
Clearly we cannot get such a result by giving Adams and Brown the extra 4½ 
only the one-third of the time that the A-B coalition may be supposed to form. 

(3) The working of Harsanyi's model for F involves three shotgun marriages, i.e. coalitions 
formed in order to lose. 
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We must assume that if Cox combines with Adams, he will have to compensate 
Adams for entering the less secure A-C partnership instead of A-B(4). This 
suggests that Adams can be 4½ better off two-thirds of the time. (For if Brown- 
Cox combine, the insurance available for Adams-Brown cannot help Adams.) 
But the possibility of Adams-Brown getting 60 instead of 54 has completely 
disappeared. The player excluded from a two-man coalition must behave deviantly 
with probability 1. And with invariable success. 

Perhaps a better explanation, though not for supporting Selten's theory, is that 
as this game is 20 ~o of the way from F4s to Fgo, where Cox would be a dummy, 
Cox is suffering from 20 Yo leprosy. There is a serious point here; is Selten's value 
for F54 required by linearity to be the weighted average that it is of the values 
of F,5 and of Fg0 ? In a way, yes; the value of F~4 is determined by the axioms. 
But the linearity notion involved in the axioms, a standard one, does not make 
Fs ,  a weighted average of the other two. 

.8 F4 s + .2 I"90 is a well-defined game M, played as follows. There is an initial 
chance move, after which either F,5 (with probability .8) or 1"9o (with probability .2) 
will be played. Selten's axioms require M to have the corresponding average 
value, (33, 33, 24), which happens to be the same as that of Fs,. The contract 
value also has this linearity property, and the contract value of M is (32, 32, 26). 
It differs from the Selten value just in proportion as the contract value of 1-'9o 
differs from the Selten value of Fgo. But M is not at all the same as F5,; the 
difference has some value according to my theory, none according to Selten's. The 
difference is just that the one windfall of 90, which in 1-'5, Adams can give or 
withhold, breaks into two parts in M. The parts happen to be mathematical ex- 
pectations, but for game theory it would be the same if they were certainties, 
mere physical parts of the 90-unit pile. Adams can give 72, 36 each to Brown 
and to Cox; and he can give Brown 18 independently of what he does with the 72. 
Obviously Cox has no claim to equal standing in the game M. According to the 
Selten value, the detached 18 in M as compared with Fs ,  does not strengthen 
Adams and Brown. 

A remark is in order about linearity. The contract value has the property, 
and I have no argument against linearity; but neither do I regard it as a satis- 
factory axiom to support dubious theories with. If one drops the artificial hypo- 
thesis Of transferable utility (greatly increasing the difficulties), neither the Nash 
cooperative value for two-person games [6], the value for two-person games in my 
thesis [4], nor any value that I know of satisfies any substantial remnant of 
linearity. One would not expect equality, for the average of values need not be 
Pareto optimal in the average of games. But one might expect an inequality. But 
it fails. 

(4) 4~ is enough compensation, for Adams has no prospect in 1"54 more than 4½ better 
than in 145. 
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How does the Selten value of F54 follow from the axioms ? The complete 
answer is very complicated (fourteen auxiliary games in Selten's proof [9]), but the 
qualitative point that Cox's value will be less than the others is easily established; 
and the argument brings out another feature of the theory that may enrich our 
dossier. Consider the game A in which Adams chooses (0, 0, 0) or ( -36 ,  0, -36).  
In F54 + A (a careful reader may translate via .5 Fs4 + .5 A, for correctness) 
one strategy for Adams yields ( -36 ,  54, 0); so Adams-Brown can certainly 
secure (9, 9, 0), and Cox is dearly weaker. (It is interesting to compare F54 + A 
and M; my theory agrees with Selten's that Cox is weaker in these games, but 
makes him quite a bit worse off in Fs4 + A. But this is not the place for fine 
points.) Of course that settles Fs4, for the Selten value of A is (0, 0, 0). 

Look at what the dummy taboo does in A. The contract value is (4, 4, - 8). 
The mechanism is plain; this is a game of extortion, the threat ( -36 ,  0, -36)  is 
not very persuasive, but a threat of ( -18 ,  -18 ,  -36)  may move Cox. Selten 
forbids it - -  this may be socially desirable. It is not impartial. From Adams' 
point of view as well as Brown's, it prohibits best play. 

3. Residual value. If F has players 1 . . . .  , n, let Dk(F ) denote an n + k-player 
game constructed from F by adding dummy players n + 1 . . . .  , n + k, each of 
whom gets 0 at each outcome of F. Dk~b-(F) is the n-vector consisting of the 
first n components of q~-Dk(F). The residual value ~r (F) is limk~o~D~b-(F). 

The question of the easiest proof that q~" exists seems mildly interesting; as we 
see from the example A, the vectors DkqS-(F) need not be monotone decreasing. 
Here we shall describe a computation previously done by L. S. Shapley (un- 
published) and indicate why it yields the residual value. Recall that the Shapley 
value ~b~(Dk(F)-) of the upraised game with k dummies, to the i-th player, is the 
average of the expressions v-(S u { i } ) -  v-(S), averaged over the (n + k)! 
total orderings of the players, S being the set of predecessors of i. Let xi( j = 1,..., n) 
be the fraction ofallthe players preceding the j-th, So = {j ~ S: j  < n} = So(x, i). 
Then v-(S u {i}) - v-(S) = 6k(X, i) is determined by the n-vector x and the 
indices i, k; v-(S), for example, is the value of a two-player constant-sum game 
with sum rn derived from F by aggregating players, So making the first player 
and getting at each outcome z the payoff Z[hi(z): i ~ So] + x i ( m -  F, hi(z)). 
The other term involves k. So 

(3.0) qSi(Dk(r)-) = f 6k(X, i)dpk, 

where /~k is a suitable atomic measure on the unit n-cube. The formulas define 
6k(X, i) On the whole cube, piecewise uniformly continuous on a fixed set of n! 
pieces; then so is 6(x, i) = limk~o 6k(X, i), for the convergence is uniform. We 

conclude 
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f (3.1) ~b r = 6(x, i)dl~, i 

where # is ordinary volume. For the functionals J" dl~k (Riemann sums) converge 
tof d,. 

To illustrate (3.1), the double integral for ~b~ (a = Adams) in the example 
A reduces to 2 So s (36x - 72xZ)dx = 3; q~ is -15 .  

Evidently the operators Dk, 4)" are positive-linear on games to games resp. 
vectors. From this we can get an interesting remark and a computational shortcut. 
The constant-sum extension of F, with any chosen constant sum c, is con- 
structed [7] by adjoining a player who gets c - Zhi(z) at each outcome z. In general 
the contract value of the constant-sum extension differs from the residual 
value; for A it is (12, 0, -24 ,  12 + c). But: 

(3.2) The constant-sum extension gives the residual value for fixed-threat games. 

A fixed-threat, or "characteristic function" game is determined by giving 
a superadditive function v on the set of all sets of players. To play, each player 
names a set; those sets S named by all their members get v(S) (divided equally 
among them, say), and players i left out get v((i}). Now the characteristic func- 
tions, as set functions, are linearly generated [10] by the pure bargaining games 
Bs determined by v(T) = 1 for T ~_ S, v(T) = 0 otherwise. Thus every fixed- 
threat game F satisfies a relation F + Z2sB s = EI~sB s with non-negative co- 
efficients 2s and/z  s. (Strictly, + for games complicates the strategies; to justify 
the equation we must modify the sums of games by requiring a player to name 
the same S for each summand. Clearly this will not affect the values.) So it suffices 
to prove (3.2) for the games Bs. In the constant-sum extension of Bs with sum 1, 
the added player's value is the probability that in a total ordering he is between 
two members of S; this is (s - 1)/(s + I). The remaining 2/(s + 1) is shared 
equally by the members of S. In DR(Bs) , if the players are totally ordered, each 
player i of S has fig(X, i) < 1/k except for the first and last of them, who get to- 
gether nearly the fraction of players not between two members of S. The expected 
value is again 2/(s + 1), and S shares it equally. 

REFERENCES 
1. J. C. Harsanyi, Approaches to the bargaining problem before and after the theory of  games: 

a critical discussion of  Zeuthen's, Hick's, and Nash's theories, Econometrica, 24 (1956), 144-157. 
2. J. C. Harsanyi, A bargaining model for the cooperative n-person game, Annals of Math. 

Study 40 Princeton, (1959), 325-355. 
3. J. C. Harsanyi, A simplified bargaining model for the n-person cooperative game, Inter- 

national Economic Review 4 (1963), 194-220. 
4. J. R. Isbell, Absolute games, Annals. of Math. Study 40, Princeton, N. J. 1959, 357-396. 
5. J. R. Isbell, A modification of Harsanyi's bargaining model, Bull. Amer. Math. Soc. 66 

(1960), 70-73. 
6. J. Nash, Two-person cooperative games, Econometrica 21 (1963), 128-140. 



144 JOHN R. ISBELL [July 

7. J. yon Neumann and O. Morgenstern, Theory of  Games and Economic Behavior, 2nd edn., 
Princeton, 1947. 

8. T. C. Schelling, The Strategy of Conflict, Cambridge, Mass., 1960. 
9. R. Selten, Valuation of n-person games, Annals of Math. Study 52, Princeton, 1964, 

577-626. 
10. L. S. Shapley, A value for n-person games, Annals of Math. Study 28, Princeton, N. J. 

1953, 307-317. 
11. L. S. Shapley, Values of  large market games: status of  the problem, Rand Memorandum 

RM-3957-PR, 1964. 

CASE-WESTERN RESERVE UNIVERSITY 
CLEVELAND, OHIO 


